eeeeee

W Construction of the Z-Order Curve in 3D

1. Choose a level k

2. Construct a regular lattice of points in the unit cube, 2k points
along each dimension

3. Represent the coordinates of a lattice point p by integer/binary
numober, i.e., k bits for each coordinate, py = by k...by 1

4. Define the Morton code of p as the interleaved bits of the
coordinates, i.e., m(p) = b, kb, oy k...b; 10y, 10y 1

5. Connect the points in the order of their Morton codes —
z-order curve at level k

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

66

eeeeee

Example
» 1010 1011 1110 1111
11 v > e\ v >@
1000 1001 \\\1410 101
10 “\)“ -
0010 0011 0110 0111
0} @ >*\\\\
0000 001 \Qﬂ (‘)O\@ 01
00 v >@
00 01 10 11
G. Zachmann Massively Parallel Algorithms SS July 2014

=
<n

yxyx

AR
0000

lowest
level

Sorting 67

eeeeee

11

10

01

00

G. Zachmann

1010 1011 1110 1111
W > @) > @
N N\ N
N
1000 1001 \QJO \1101
@ > @ >
\\
0010 0011 %\ 0111
@ > P \)9
N \ N
N
0000 \Qom \gg 00 N1 01
@ >@ v > @
00 01 10 11

Massively Parallel Algorithms

SS

July 2014

Sorting

.
.

68

za
B

eeeeee

Properties of Morton Codes

= The Morton code of each point is 3k bits long

= All points p with Morton code m(p) = Oxxx lie below the plane
z=1/2

= All points with m(p) = 111xxx lie in the upper right quadrant of
the cube

= |f we build a binary tree/quadtree/octree on top
of the grid, then the Morton code encodes the
path of a point, from the root to the leaf that
contains the point ("0" = left, "1" = right)

= The Morton codes of two points differ m
for the first time — when read from left to right —
at bit position h &
the paths in the binary tree over the grid split at level h

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

69

eeeeee

W Construction of Linear BVHs

= Scale all polygons such that bbox = unit cube

= Replace polygons by their "center point"

= E.g., center point = barycenter (Schwerpunkt),
or center point = center of bbox of polygon

1.0

i,

\J A

0.0 1.0

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 70

eeeee

= Assign Morton codes to points according to enclosing grid cell

= Assign those Morton codes to the original polygons, too

v
1010 1011 1110 1111
v
v
1000 1001 1110 1101
P v
0040 0011 0110 0111
0000 0001 0100 0101
v
G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

71

= Now, we've got a list of pairs of {polygon ID, Morton code)

= Example:

rgon > M. \ Aa k) 4 a

Morton code — 1010 1000 1001 0010 0000 0011 1110 1101

= Sort list according to Morton code, i.e., along z-curve
— linearization

ST N N \RA A

Morton code — 0000 0010 0011 1000 1001 1010 1110 1101
Array indexi— 0O 1 2 3 4 5 6 7

= Next: find index intervals representing BVH nodes at different levels

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 72

eeeeee

= Now, root of BVH = polygons in index range O,...,N-1

= All polygons with first bit of Morton code = 0/1 are below/above the
plane z=1/2

= Find index i in sorted array where first bit (MSB) changes from "0" to "1"
= Left child of root = polygons in index range O,...,i-1
= Right child of root = polygons in index range i,...,N-1

= [n general (recursive formulation):

= Given: level h, and index range |,...,j in sorted array, such that Morton
codes are identical for all polygons in that range up to bit h

= Find index k in [i,j] where the bit at position h' (h' > h) in Morton codes
changes from "0" to "1"

= Can be achieved quickly by binary search and CUDA's _ cl1z ()
function (= "count number of leading zeros")

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 73

eeeeee

= Consider polygon i and i+1 in the array

= Condition for "same node":

Polygons i and i+1 are in the same node of the BVH at level h <
Morton codes are the same up to bit h

= Define a split marker := (index i, level h)

= Parallel computation of all split markers — "split list":
= Each thread i checks polygons i and i+1

= Loop over their Morton codes, let h be left-most bit position where the
two Morton codes differ

= Qutput split markers <i,hy, ..., <i,3k) (seems like a bit of overkill)

= Can be at most 3k split markers per thread — static memory allocations
works

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 74

eeeeee

= Example:

S N N / \kA A

Morton code — 0000 0010 0011 1000 1001 1010 1110 1101
Array indexi— 0O 1 2 3 4 5 6 7

A

(0,3) 1,49 @1 G4 4,3) (5,2 (6,4)

(0,4) (2,2) 4,4) (53)
(2,3) (54
(2,4)

Split pair = (i,h) , 1 € [[0,N-2] , h € [1,3K]

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 75

eeeeee

= Last step:
= Compact split list
= Sort split list by level h
= Must be stable sort!

= For each level h, we now have ranges of indices in the resulting
list; all primitives within a range are in the same node on that

level h
G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

76

Bremen

= Example:

G. Zachmann

Massively Parallel Algorithms

SS

July 2014

Sorting

‘ i CcG

° VR

77

eeeeee

= Final steps:
= Remove singleton BVH nodes
= Compute bounding boxes for each node/interval

= Convert to "reqular" BVH with pointers

= Limitations:
= Not optimized for ray tracing

= Morton code only approximates locality

G. Zachmann Massively Parallel Algorithms SS July 2014

Sorting

78

eeeeee

W Faster Ray-Tracing by Sorting ‘

= Recap: the principle of ray-tracing
= Shoot one (or many) primary rays per pixel into the scene
= Find first intersection (accelerate by, e.g., 3D grid)

= Generate secondary rays (in order to collect light from all different
directions)

= Recursion — ray tree

= Ray-Tracing is "embarrassingly parallel":
= Just start one thread per primary ray

= Or, is it that simple?

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 82

eeeee

Generateray

Camera KD-tree Traverse kd-tree

. Per-ray stack
Reflection Rays
o
L !
N\

\

|
Objectlist Intersect Triangles

Trianglelist

~
~

Normallist

Refragti

Light, Materials

Frame buffer

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

= The ray tree for
one primary ray:

Ei = Primaerstrahl Si = Sc|
Ri = reflektierter Strahl Ci=Sc
Ti = transmittierter Strahl i =St

= Problem for massive parallelization:
= Each thread traverses their own ray tree

= The rays each thread currently follows go in all kinds of different directions

= Consequence: thread divergence!

= Another problem: each thread needs their own stack!

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

84

eeeeee

VR X

= Definition coherent rays:
Two rays that have "approximately" the same origin and the
same direction are said to be coherent rays.
A set of coherent rays is sometimes called a coherent ray packet.

= Observations:
= Coherent rays are likely to hit the same object in the scene

= Coherent rays will likely hit the same cells in an acceleration data
structure (e.qg., grid or kd-tree)

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 85

eeeeee

Y

Approach to Solve the Divergence Problem

= Take a stream of rays as input

= Can be arbitrary mix of primary, secondary, tertiary, shadow rays, ...
- In the following, we
| ’
Arrange them into packets of coherent rays GW“I ook at this step
= Compute ray-scene intersections

= One thread per ray

= Each block of threads processes one coherent ray packet

= Each thread traverses the acceleration data structure

= At the end of this procedure, each thread generates a number of new rays

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

86

eeeeee

Identifying Coherent Rays

= General approach: classification by discretization

= Here: compute a (trivial) hash value per ray
= Discretize the ray origin by a 3D grid — first part of hash value
= Discretize ray direction by direction cube — second part

= Concatenate the two hash parts — complete hash value

3
7 0
2 s /KU
1 -\ :
1
0 4 3

0 1 2 3 4 5 6 7

= Can be done in parallel for each ray:

RayIDs: |0|1[2|3|4|5|6|7|8|9|10|11[12/13|14|15[16/17|18|19

Hash values: LIl

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

87

eeeee

= Note: often, there are many consecutive rays (in the input array)
that are coherent, i.e., will map to the same ray hash value

= For instance, shadow rays

= Multiple secondary rays from glossy surfaces, etc.

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

88

eeeee

= Can we sort the
array of rays yet?

Ray IDs:

= We could, but we'd Hash values:

perform way too
| Chunk Hash:
much work! Chunk Base:
Chunk Size:

" |dea:

Chunk Hash: _

1. Compact the array Chunk Base:

-Similar to run length
compression/coding

2. Sort
3. Unpack

G. Zachmann

Hash vaives:

Massively Parallel Algorithms

Compress

0(3|7|9|14(17

3/ 4/2/5(3|3

Sort (radix, bitonic)

0|14

Chunk Size:

4(5(2(3[3]|3

Decompress

Chunk (a.k.a. run)

Reordered IDs:

3|4|5/|6|9|10[11]12[13) 7 |8 |17[18/19] 0| 1|2 |14|15[16

SS July 2014

Sorting

89

eeeeee

Ray Array Compaction s

1.Set all HeadFlags[1] = 1, where HashValue[1-1] = HashValue[1i],
else set HeadFlag[i] = 0

2. Apply exclusive prefix sum to HeadFlags array — ScanHeadFlags
= Now, ScanHeadFlags[1] contains new position in the Chunk arrays

3. For all i, where HeadFlags[1]==1:

ChunkBase[ScanHeadFlags[i]] =1
ChunkHash[ScanHeadFlags[1]] = HashValue[1i]

B

4. Set all 1D
. . ayIDs:|o|1|2|3|4|5 6|7|8|9 10/11]12|13/14|15|16/17|18|19
chunkotzelL] = oo vaives: [11 I
ChunkBase[i+1] Head Flags: | 1 |o|o|1|o|o|o|1|o|1]|ojo|ojo|1|o|o|1]|0]|0
— ChunkBase[1] Scan(Head Flags): |0 |1 |1 (1 |2|2|2|2|3|3|4|4|4|4|4|5|5|5|6]|6

Chunk Hash: :-:.

Chunk Base: | 0|3 |7 |9 (14|17
Chunk Size: |3|4|2|5|3|3

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 90

eeeee

Unpacking the Chunk Array

= Compute exclusive prefix-sum on ChunkSize — ScanChunkSize

= ScanChunkSize contains first index in output array for range of ray IDs

the chunk represents

= |nitarray S with 1's, init array HeadFlags with O's

RayIDs: /o 1 /2 3 /4 5/6|7|8|9 10/11/12/13/14/15/16 17 18 19
Hash values: ||| [
ChunkHash:-
Chunk Base: | 3|9 |7 (17| 0|14 - Sorted Chunks
Chunk Size: [4[5[2[3]3]3
Scan(Chunk Size):| 0 | 4 | 9 |11[14[17
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
S = Skeleton: | 3 | 1 19t {111 |7[1[17|1|1]0|1]|1]|14][1 |1
F=HeadFlags: |1 |0|0 |0 olo|o|o|1|o|1]|0o|0|1|0|O|1|0]|0O
SegScan(S,F): |3 |4 |56 |9|10|11[12[13|7 | 8 |17|18[19|0 | 1| 2 |14|15|16

Hosh vaives: [

G. Zachmann

Massively Parallel Algorithms

Reordered IDs = SegScan(S, F)

SS

July 2014

Sorting

91

eeeee

= Foralli=0, ..., #chunks-1: set
S[ScanChunkSize[1]] = ChunkBase[1]
HeadFlags[ScanChunkSize[1]] =
= Perform inclusive segmented prefix-sum on S with bounds
specified by HeadFlags — SegScan array

RayIDs: 0, 1/2/3|4|5(6|7|8|9|10/11(12|13/14|15/16(17|18|19

Hash valves: [] I
Chunk Hash: -

Chunk Base: 7117/ 0 |14 Sorted Chunks
Chunk Size: [4[5|2[3]3]|3

Scan(Chunk Size):| 0 | 4 | 9 |11[14[17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S=Skeleton: [3 |1 |1 [1]|9|1|[1[1|[1|71[17]|1|1]0]|1]1[14]1]1
F=HeadFlags: |1 |0o|0 |0 ojo|lo|o|t1|o|1]|o|O|1|0|O]|1|0]0O

SegScan(S, F): |34 |56 |9|10|{11[12/13|7 | 8 |17|18[19|0 | 1| 2 |14|15|16

Hosh vaives: [

Reordered IDs = SegScan(S, F)

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 92

eeeee

= For all i in [O,#rays-1]:
set Qutput[1] = RayID[SegScan[1]]
= Result = array of re-ordered ray IDs, ordered by their hash value
(= "coherence hash value")

RayIDs: 0, 1/2/3|4|5(6|7|8|9|10/11(12|13/14|15/16(17|18|19

Hash values: []| I
Chunk Hash: -

Chunk Base: 7117/ 0 |14 Sorted Chunks
Chunk Size: [4[5|2[3]3]|3

Scan(Chunk Size):| 0 | 4 | 9 |11[14[17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S=Skeleton: [3 |1 |1 [1]|9|1|[1[1|[1|71[17]|1|1]0]|1]1[14]1]1
F=HeadFlags: |1 |0o|0 |0 ojo|lo|o|t1|o|1]|o|O|1|0|O]|1|0]0O

SegScan(S, F): |34 |56 |9|10|{11[12/13|7 | 8 |17|18[19|0 | 1| 2 |14|15|16

Hosh vaives: [

Reordered IDs = SegScan(S, F)

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting 93

eeeeee

Y partition Into Ray Packets

= Remaining problem: the sets of rays with same (coherence) hash
value can have very different lengths

= Solution: partition into ray packets

= Definition of ray packet:
Ray packet = index range (in array of re-ordered rays) such that
1. all rays have same coherence hash value, and
2. number of rays in range < maximum packet size.

SegScan(S,F): |34 |5|6|9|10/11(12(13|7 |8 |17|18[19/ 0 | 1 | 2 [14|15|16

Hosh values: [

\ AN JANAN JUN A)
Y Y v Y v Y Y
Ray
packet

1 thread block

G. Zachmann Massively Parallel Algorithms SS July 2014 Sorting

94

U Results

= Comparison (only!) for primary and shadow rays
("New method" contains some further tricks not
described here):

Primary rays (at 1024x768):

o 100 - 63 69 81
S 90 26 \
©
= 25 -

0 ‘

010z ‘dooT B eyzueien)]

Fig.11(a) Fig.11(b) Fig.11(c) Fig.11(d) New
Soft Shadow rays (at 1024x768x16 samples): method
200 - 147 153
8 150 128 112
2100 -
§ 50 | 34 o4 46 46
= 0] =
Fig.i11(a) Fig.11(b) Fig.11(c) Fig.11(d)

Anyone up for a real & thorough comparison?

G. Zachmann

Massively Parallel Algorithms

SS July 2014

96

Bremen

Y

G. Zachmann

Massively Parallel Algorithms

SS

July 2014

Sorting

97

